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Abstract
Purpose – The presented paper aims to consider algorithm for optimal design of multilayer thermal
insulation.
Design/methodology/approach – Developed algorithm is based on a sequential quadratic
programming method.
Findings – 2D mathematical model of heat transfer in thermal protection was considered in frame of
thermal design of spacecraft. The sensitivity functions were used to estimate the Jacobean of the object
functions.
Research limitations/implications – Design of distributed parameter systems and shape optimization
may be thought of as geometrical inverse problems, in which the positions of free boundaries are determined
along with the spatial variables. In such problems, the missing data (i.e. the position of boundaries) are
compensated for by the presence of the so-called inverse problem additional conditions. In the case under
consideration, such conditions are constrains on the temperature values at the discrete points of the system.
Practical implications – Results are presented how to apply the algorithm suggested for solving a
practical problem – thickness sampling for a thermal protection system of advanced solar probe.
Originality/value – The procedure proposed in the paper to solve a design problem is based on the
method of quadratic approximation of the initial problem statement as a Lagrange formulation. This has
allowed to construct a rather universal algorithm applicable without modification for solving a wide range of
thermal design problems.
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Nomenclature
Dl = Layer thickness vector
r l = Density vector
L = Number of layers in system
Tl = Temperature distribution at the l-th layer
r = Radial coordinate
u = Polar angle
t = Time
Rl = Radial coordinate at the boundary of layer
C1 = Heat capacity
l1 = Thermal conductivity
Al = Contact thermal resistance
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b = Parameter characterized a boundary condition
a = Parameter characterized a boundary condition
q = Heat flux
N = Number of layers which thickness is to be determined
Tm = Temperature constraint at the point with coordinate Rm

Nt = Number of steps by time
Nu = Number of steps by polar angle
M = Number of constraints
w ik = Basis functions
J =Minimized functional
K = Lagrangian function
�W

T = Vector of Lagrangian multipliers
�T
T

= Constraints vector
A = Jacobian matrix of constraints
H = Hessian matrix
U = Objective function
�d = Nonoptimal value of desired vector
D�d = Search direction
�p = Gradient of Lagrangian function
g = Descent step

Introduction
Investigation of the close vicinity of the Sun is one of the major problems of astrophysics,
significant for understanding of fundamental physical processes in the solar atmosphere
responsible for the magnetic activity, the heating of the corona and energetic-particle
acceleration. Despite the recent great achievements in the Sun exploration, many questions,
concerning its nature, remain unanswered. A mission to the innermost regions of the
heliosphere, providing a combination of in-situ and remote-sensing observations, would
represent the next step forward in the exploration of the Sun and allow determining the
structure and dynamics of the solar atmosphere, the corona heating mechanisms and the
origin and evolution of the solar wind. The acquisition of the in-situ measurements together
with the high-resolution imaging and spectroscopy from a near-Sun and out-of-ecliptic
perspective made from series of heliocentric orbits with gradually decreasing perihelion
distances is the primary scientific objective of the solar probe that has been developed in the
framework of “Interhelio-Zond” project.

The extreme environments to be encountered by the spacecraft during perihelion passes
require a sophisticated thermal design that can accommodate a wide range of heat loads. To
ensure required operational temperature for the instruments and components inside the
spacecraft bus solar probe utilizes a sun shield, protecting it from the direct exposure to the
intense solar flux. The main problem in the developing of thermal-loaded structure
members, unit members or systems is how to sample optimal design parameters of an object
under consideration. As a rule in complex problems the optimal parameters search is
realized stage-by-stage based on decomposition of a design problem to a few levels with
different detailed elaboration of mathematical models and search operations. The topic of
present paper is concerned with development of thermal protection of advanced solar
probes. In the case of cone or spherical thermal protection, it is very important to provide the
weight effectiveness of thermal protection using a variable thickness of it, dependent on
external thermal loading in different points of surface.
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In the general case, a thermal design problem can be presented as following (Alifanov,
1978): it is necessary to find a vector of design parameters of a system �p from some domain
P to minimize the object functional J �p; �T

� �
. The total mass of system, the cost of

development and testing of thermal insulation systems and others can be used as a
minimized functional (design criterion, optimization criterion, etc.). The domain of feasible
solutions is determined by technical and physical constraints in forms of equalities
gið�Þ; i ¼ 1; 2; . . . ; n and inequalities sj �Tð Þ � 0; j ¼ 1; 2; . . . ; m: These constraints
usually depend on the characteristics of the system's state (temperature, heat fluxes, mass
velocity of ablation, concentrations, etc.): �T �x; tð Þ ¼ Tk �x; tð Þ� �K

1 , whereK is determined by
the form of the used mathematical model, �x – spatial coordinate, t – time. So I have the
following formalized problem:

min J �p; �T
� �

;
�p 2 P

(1)

P ¼ �p 2 P
����gi �T �x; tð Þ;�z �T ;�x; t

� �� �
¼ 0; i ¼ 1; 2; . . . ; n;Sj �T �x; tð Þ;�z �T ; �x; t

� �� �(

� 0; j ¼ 1; 2; . . . ;m

)
(2)

�T �x; tð Þ ¼ L �T �x; tð Þ; �p; �x; t ; �z �T ; �x; t
� �� �

(3)

where �z – vector of known characteristics (parameters of a mathematical model) of the
system under consideration, L – nonlinear operator (mathematical model of heat transfer in
the considered system).

The optimal design problem solving is executed with incomplete initial data; therefore,
the main approach to determining the design parameter value is a search procedure with the
increasing volume of used information and with a constant-increasing degree of detailed
elaboration of a mathematical model from stage to stage. A mathematical model of the
developed system L(. . .) in equation (3) and a minimizing object functional J in equation (1)
are the basis of optimal thermal design. The model connects the desired parameters (or
control functions), heat loads (for example, external and internal heat fluxes) and properties
of systems, which are “causes” from the view point of direct problem statement, with
characteristics determined by states of system (“effects” – for example, temperature). So, if I
follow the conception of cause–effect relationship, a thermal design problem can be
considered as inverse heat transfer problem in the extreme statement: using known
conditions determined by a feasible thermal state of the object �TP in equation (2) (domain of
effect), to find the wanted causal characteristics �p, which will satisfy these constraints and
minimize criterion J in equation (1).

From the above analysis of thermal design problems statement, one sees that all such
problems are inverse problems of mathematical physics from a view point of cause–effect
relations in the system considered. One of the most promising directions in solving the
inverse problems is to reduce them to an extreme formulation and apply a numerical method
of the optimization theory.
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All software for calculations in optimal design problems is divided in two parts
providing different subject orientation of the solving process, namely:

� a “searching” part, which includes algorithms providing search operations
based on a minimization of the properly sampled optimization criteria
(algorithms are the object of the analysis in the present paper); and

� a “simulating” part for a simulation of the analyzed system operation process. It
includes a heat transfer mathematical models, which connect design parameters
with input data (cause–effect relationship set up in the system) based on a
primary presentation of the real process in the form of mathematical model.

Determination of the number of layers, types of materials and thickness of layers for multi-
layer thermal insulation of minimal mass is one of the most traditional thermal design
problems (Alifanov, 1978).

Using an arbitrary mathematical model of the designed system, usually a design
problem can be simplified supposing that the optimal layer-thickness in every considered
point can be determined independently for each other by a criterion of minimal local mass of
the system in a given point (Alifanov, 1978), using one-dimensional heat transfer model.

An optimization problem can be solved if I take into account the constraints on the
system statement characteristics (temperature on the boundaries of layer, stressed state
of the materials, costs, etc.) through a direct search method both in variation of the
number of layers and the materials used. The layer thickness and density vector
(Dl ; l ¼ 1; 2; . . . ; L, r l ; l ¼ 1; 2; . . . ; L) is determined for every such variant to minimize
the local mass in the given point r and to satisfy the constraints requirements (Alifanov, 1978).

It should be noted that a solution based on the minimal local mass criterion at specific
points of surface can satisfy a developer only in the case when heat loads change not very
significant from one point r to another. In the general case, desired vectors �D and �r (optimal
for every rate points r) will not be compatible with each other from technological point of
view; therefore, it can be possible that practical realization of a desired �D as a function of
coordinate will be not reasonable because of technological difficulties. So in this case, it is
necessary to find compromise solution, which is near to minimized mass solution and
satisfies the cost-technology conditions. It can be done, for example, by changing a
minimized functional equation (1) as suggested by Alifanov (1978).

The algorithms for similar problem solving were considered in Mikhailov (1980), Meric
(1986) and Bushuev and Gorskii (1991). However, in all these publications, the authors used
a penalty function method for solving the corresponding optimization problem proposed in
early 1960s. The algorithms tell from each other only by technique in calculating the
gradients of a minimizing functional (the adjoint variables, sensitivity functions, etc.). But,
the method of penalty functions, in spite of its apparent simplicity, has one a very distinct
defect: it is necessary to sample a suitable weight functions for every new type of the
thermal insulation (or for considerable changing in the properties of materials used). And, it
is very difficult to obtain reliable solution of such optimization problem using penalty
function method. Difficulties arise if an unsuitable value of the penalty parameter is chosen.
If penalty parameter is too small, the region in which iterates converge to solution may be
very small. On the other hand, the problem will be ill-conditioned if penalty parameter is too
large. Some comparative metrics (just for constant thickness of thermal protection over the
spacecraft surface) were presented in Nenarokomov (1997), where sequential quadratic
programming (SQP) approach has been compared with penalty function method developed
in Mikhailov (1980). Computing times of SQP approaches were about 20 per cent less than
traditional penalty functions, but the main preference of SQP approach is that in case of

Variable
thickness

1043



www.manaraa.com

penalty functions method for new thermal protection set, it is necessary to execute three-four
preliminary total calculations to find optimal values of penalty functions. In the case of SQP
method, it is not necessary.

The proposed approach to an optimal design problem is based on a SQP algorithm with
quasi-Newton approximation to the Hessian of Lagrangian function corresponding to an
optimization criterion (Gill et al., 1981). This allows building a rather universal algorithm
applicable without modifications to solve a wide range of problems of thermal design.

Numerical methods
The optimal design problem of multi-layer thermal insulation is considered in the
assumption that a system consists of L layers of different materials with variable thickness
in the angular direction Dl ; l ¼ 1; 2; . . . ; L and density r l ; l ¼ 1; 2; . . . ; L. Also, a heat
transfer process in the system is supposed to be two-dimensional by the spatial coordinate
and a transient temperature distribution at the l-th layer Tl r; u ; tð Þ; l ¼ 1; 2; . . . ; L,
where t is time and is covered by the quasi-linear heat conduction equations. The
coefficients of parabolic type equations Cl ; l l ; l ¼ 1; 2; . . . ; L are functions of
temperature. There is a contact heat transfer between the layers characterized by contact
thermal resistances Al ; l ¼ 1; 2; . . . ; L, which are also function of temperature. There may
be the boundary conditions of the first, second or third kind at both sides of the system
considered. In such case, the heat transfer in the considered system is covered by the
following set of differential equations:

Cl Tð Þ @Tl

@t
¼ 1

r2
@

@r
r2l Tð Þ @Tl

@r

	 

þ 1

r2 sinu
@

@u
l ðTÞsinu @Tl

@u

	 

r 2 Rl�1; Rlð Þ; u 2 0; u 0ð Þ; l ¼ 1; 2; . . . ; L; t 2 tmin; tmaxð �

(4)

Tl r; u ; tminð Þ ¼ T0l ;
l ¼ 1; 2; . . . ; L

(5)

�b 1l 1 T1 R0; u : tð Þð Þ @T1 R0; u ; tð Þ
@r

þ a1T1 R0; u ; tð Þ ¼ q1 u ; tð Þ (6)

�b 2l L TL RL; u ; tð Þð Þ @TL RL; u ; tð Þ
@r

þ a2TL RL; u ; tð Þ ¼ q2 u ; tð Þ; (7)

l l Tl Rl ; u ; tð Þð Þ @Tl Rl ; u ; tð Þ
@r

¼ l lþ1 Tlþ1 Rl ; u ; tð Þð Þ @Tlþ1 Rl ; u ; tð Þ
@r

;

l ¼ 1; 2; . . . ; L� 1; t 2 tmin; tmaxð �;
(8)

�l l Tl Rl ; u ; tð Þð ÞAl Tl Rl ; u ; tð Þð Þ @T Rl ; u ; tð Þl
@r

¼ Tl Rl ; u ; tð Þ � Tlþ1 Rl ; u ; tð Þ; (9)

In the general case only, the thickness of lk-th layers k ¼ 1; 2; . . . ; N ; N � L is desired.
The thickness of the rest layers can be assigned proceeding from technological and strength
considerations.
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The criterion for estimation of the unknown vector is, therefore, defined by the local mass
functional:

J �Dð Þ ¼ 2p
XN
k¼1

XL
l¼1

ðu 0

0

Rlkðu Þr lk Dlkdu (10)

where the best estimates will minimize the functional equation (10) and satisfy the following
conditions:

Dlk � 0; k ¼ 1; 2; . . . ;N (11)

and also the temperature constraints in the separate points of a system will be taken into
account:

T Rm; u ; tð Þ � Tm; m ¼ 1; 2; . . . ; M ; (12)

where Tm – is constraints for temperatures at the point with coordinate r = Rm. Usually,
such points are at boundaries of layers T Rl; u ; tð Þ; l ¼ 1; 2; . . . ;Lð Þ.

For numerical solution, it is necessary to approximate direct problem equations (4)-(9) on
the finite difference grid with Nt steps by time. Therefore, the constraints in equation (12)
can be represented as:

T Rm; u n; t j
� � � Tm; j ¼ 1; 2; . . . ; Nt ; n ¼ 1; 2; . . . ;Nu ; m ¼ 1; 2; . . . M (13)

assuming that the grid is thick enough and the fulfilment of condition in equation (13)
practically guarantees the fulfilment of condition in equation (12).

It should be also noted that based on a warming-up nature of heat transfer
process in a thermal insulation system, in majority of practical cases, the
temperatures on the line Rm can touch the constraints Tm only at one time t � ffi t j�
and in one point u � ffi u n� ; therefore, only one constraint from equation (13) can be
an active constraint, namely:

T Rm; u n� ; t j�
� � ffi Tm; m ¼ 1; 2; . . . ; M (14)

Therefore, further for simplification of formulas, I will use a following notation:

T Rm; u n� ; t j�
� � � Tm; m ¼ 1; 2; . . . ; M

A question of sampling strategy of a set of active constraints will be considered below.
The unknown parameters and the functional gradient of the considered problem depend

on angular coordinate. In this case, the expression for gradient may be obtained
representing the desired relations in parametric form.

A universal form of parameterisation is:

Dlk uð Þ ¼
XNk

i¼1

dikf ik uð Þ; k ¼ 1; 2; . . . ;N (15)
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where dik; i ¼ 1; 2; . . . ;Nk; k ¼ 1; 2; . . . ;N are unknown parameters, w ik uð Þi ¼ 1;
2; . . . ;Nk; k ¼ 1; 2; . . . ;N is a combination of basis functions. Next, instead of equation (11),
I can consider the vector:

�d
T ¼ d11; d21; . . . ; dN11; d12; . . . ; dNNN

� �
(15a)

The positiveness of Dlk uð Þ is provided using the technique developed at Artyukhin et al.
(1993), based on approach analyzed at De Bor (1978). And, the minimized functional may be
written in the form:

J �dð Þ ¼ �d
T �F ; (15b)

where �F ¼ fikf g; fik ¼ 2p
ðu 0

0

Rlkðu Þr lkf ikðu Þdu

Thus, the optimal design problem can be reduced to linear functional equation (10)
minimization with nonlinear constraints in equations (13), (4 to 9) and constraint
equation (11) for the estimated vector. It is known that the solution of such a problem �d

�

is the minimum of the corresponding Lagrangian functions (Gill et al., 1981):

K �d; �W
� �

¼ J �dð Þ � �W
T �T ; (16)

where �T
T ¼ d11; d12; . . . ; dNkN ;T R1; u 1; t 1ð Þ � T1; . . . ;T RM ; u Nu

; tNtð Þ � Tm
� �

is
constraints vector, �W

T ¼ W111; . . . ; Wmnj; . . . ; WMNuNtf g is the vector of Lagrange
multipliers.

The estimated �d
�
is belonged to a vector subspace, which is orthogonal to subspace of

active constraints gradients and satisfies the following conditions (Gill et al., 1981):
� T Rm; u n; t j

� �� Tm ffi 0; n ¼ 1; 2; . . . ;Nu ; j ¼ 1; 2; . . . ;Nt ;
m ¼ 1; 2; . . . ;M and T Rm; u n� ; t j�

� �� Tm ¼ 0;
� grad Jd �d

�ð Þ ¼ �r ¼ A �dð ÞT �W
�
;

whereA �d
�ð Þ is the Jacobian matrix of constraints evaluated at �d

�
.

� W�
m � 0; W�

m ¼ Wmn�mj�m ; m ¼ 1; 2; . . . ; M ;
� Q �d

�ð ÞTW �d
�
; �W

�� �
Q �d

�ð Þ is a positive definite matrix,

whereW �d
�
; �W

�� �
– Hessian matrix of Lagrangian function and columns ofQ �d

�ð Þ compose
a basis for the null space which is orthogonal to space of rowsA �d

�ð Þ.
Therefore, �d

�
can be defined as the solution of a linearly constrained

subproblem, whose objective function U is related to the Lagrangian function and
whose linear constraints are chosen so that a minimization occurs only within the
desired subspace. The class of projected Lagrangian methods includes algorithms
that contain a sequence of linearly constrained subproblems based on Lagrangian
function. And, therefore, the function U will include estimates of the Lagrange
multipliers c .

Let the set of active constraints:
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T Rm; u n� ; t j�
� � ffi Tm; m ¼ 1; 2; . . . ; M (17)

is found.
And, suppose also thatD�d is the difference:

D�d ¼ �d
� � �d; (18)

where �d is arbitrary nonoptimal value of desired vector or:

T �d
�
;Rm; u nm� ; t jm�

� �
¼ T �d þ D�d; Rm;u nm� ; t jm�

� �
¼Tm; m ¼ 1; 2; . . . ; M : (19)

To calculate the next approximation of �d~
�
the Taylor's series are used:

T �d~
�
;Rm; u nm� ; t jm�

� �
� Tm ¼ T �d;Rm; u nm� ; t jm�

� �
þ A �dð ÞD�d þ 0 kD�dk2

� �
(20)

fromwhich I get a set of linear constraints:

A �dð ÞD�d ¼ �T �d; Rm; u nm� ; t jm�

� �
(21)

And, therefore, ~�d
�
is the element of null space of linear approximation of constraints at �d

vectors. Therefore, the initial problemwas transformed to a sequence of problems:

min �pTD�d þ D�d
T
HD�d

n o
(22)

A �dð ÞD�d ¼ �T �d; Rm; u nm� ; t jm�

� �
(23)

It is reasonable to sample U of such a simple form as possible. Most suitable are quadratic
functions. So, the problem considered becomes a well-known quadratic programming
problem. In this case, the approximation of search direction D�d is considered as an
argument, and the problem is reduced to:

min �pTD�d þ D�d
T
HD�d

n o
(24)

A �dð ÞD�d ¼ �T �d; Rm; u nm� ; t jm�

� �
(25)

where �p is the gradient of Lagrangian function at �d , namely, �p ¼ A �dð ÞT �W, where �W
Lagrangian multiplier vector on a current iteration and the matrix H is a positive-definite
quasi-Newton approximation to Hessian of Lagrangian functions.

The explicit method for solving the problem in equations (24)-(25) exists in Gill et al.
(1981). The vectorD�d is presented as:
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D�d ¼ S�ds þ Z�dz; (26)

where matrix S columns are the elements of matrix A �dð Þ rows’ subspace, and
matrix Z columns compose a basis for a vector subspace which is orthogonal to
the subspace of A �dð Þ rows. Matrixes Z and S can be defined from the RV
factorization of A �dð Þ:

A �dð Þ � V ¼ R; (27)

where R is a lower triangular m 
m matrix Rij ¼ 0; i þ j < m
� �

. Therefore, the first m
columns of matrix V are equivalent to the matrix Z, the other to matrix S: V ¼ ZS: and:

A �dð ÞS�ds ¼ ��T : (27a)

If matrix A ~�d
� �

has a rankM , matrix A �dð ÞS should containM non-degenerate rows and �dS
is unambiguously defined from a linear equation system as in equation (27). Vector dz is
determined from solving a set of linear equations:

ZTHZ�dz ¼ �ZT �p þ HS�ds

� �
(28)

and, the Lagrangian multipliers are determined as:

HD�d þ �p ¼ AT �dð Þ �c (29)

and having computedD�d a new iterative value of the unknown vector ~�d
�
is calculated as:

~�d ¼ �d þ g D�d (30)

where a non-negative scalar g is the step length, minimized Lagrangian function as in
equation (16) increment in directionD�d (Gill et al., 1981).

Having completed computations of the next approximation, the condition of iterative
process halt is checked:

k~�d � �dkRNp � « ; (31)

where « is a given positive constant. If the condition equation (31) is not satisfied, a new
Hessian approximation is defined as a rank-twomodification ofH �d

�ð Þ:

H ~�d
�� �

¼ H �dð Þ � 1

D�d
T
H �dð ÞD�d

H �dð ÞD�dD�dT
H �dð Þ þ 1

�yTD�d
�y �yT (32)

where:

�y ¼ �p �d
�ð Þ � A �d

�ð ÞT �W
� � �p �dð ÞT þ �W
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It remains to consider the Jacobian matrix of constraintsA �dð Þ calculating:

A �dð Þ ¼ A mnjð Þik
� � ¼ @T Rm; u n; t j

� �
@dik

( )
¼ # mnjð Þik
� �

(33)

Unfortunately, parameters dik are included in equations (4-9) implicitly. To obtain the
# mnjð Þik m ¼ 1; 2; . . .m; i ¼ 1; 2; . . . ;Nk; k ¼ 1; 2; . . . ;N it is reasonable to make a
Landau’s transformation of variables, which provide the explicit form of equations (4-9)
relatively to dik:

r0 ¼ r � Rl�1ð Þ=Dl ; r0 2 0; 1ð Þ; r 2 Rl�1;Rlð Þ (34)

or:

r ¼ r0 Dl þ Rl�1

Then, equations (4)-(9) can be rewritten as:

r
02Dl

4 þ 2r
0
Dl

3Rl�1 þ R2
l�1Dl

2
� �

Cl Tð Þ @Tl

@t
¼ @

@r0
r
0
Dl þ Rl�1

� �2
l Tð Þ @Tl

@r0

	 


þ Dl
2

sin u
@

@ u
l ðTÞsinu @Tl

@u

	 

; r

0 2 0; 1ð Þ; u 2 0; u 0ð Þ; l ¼ 1; 2; . . . ; L;

t 2 tmin; tmaxð � (35)

Tl r
0
; u ; tmin

� �
¼ T0l ;

l ¼ 1; 2; . . . ; L
(36)

�b 1l 1 T1 0; u : tð Þð Þ @T1 0; u ; tð Þ
@r0

þ D1a1T1 0; u ; tð Þ ¼ D1q1 u ; tð Þ (37)

�b 2l L TL 1; u ; tð Þð Þ @TL 1; u ; tð Þ
@r0

þ DLa2TL 1; u ; tð Þ ¼ DLq2 u ; tð Þ; (38)

l l Tl 1; u ; tð Þð ÞDlþ1
@Tl 1; u ; tð Þ

@r0
¼ l lþ1 Tlþ1 0; u ; tð Þð ÞDl

@Tlþ1 0; u ; tð Þ
@r0

;

l ¼ 1; 2; . . . ; L� 1; t 2 tmin; tmaxð �;
(39)

�l l Tl 1; u ; tð Þð ÞAl Tl Rl ; u ; tð Þð Þ @T 1; u ; tð Þl
@r0

¼ DlTl 1; u ; tð Þ � DlTlþ1 0; u ; tð Þ;
(40)

It can be shown that @T
�
@dlk

R
0
m; u n;t j

� �
¼ #k R

0
m; u n;t j

� �
; R

0
m ¼ Rm � Rl�1ð Þ=Dl ;

where #k r
0
; u ; t

� �
satisfies the following set of equation (5):
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r
0 2
Dl

4 þ 2r
0
Dl

3Rl�1 þ R2
l�1Dl

2
� �

Cl Tð Þ @#lik

@t
5 rDl þ Rl�1ð Þ2l @2#lik

@r2

þ Dl
2l ðTÞ @

2#lik

@u 2 þ 2 rDl þ Rl�1ð Þ2 @Tl

@r
dl l

dT
þ 2 rDl þ Rl�1ð ÞDll

	 

@#lik

@r

þ Dl
2

sinu
sin u

@Tl

@u

dl l

dT
þ cos u l

	 

@#lik

@u
þ rDl þ Rl�1ð Þ2 @

2Tl

@r2
dl l

dT

	

þ rDl þ Rl�1ð Þ2 d
2l l

dT2

@Tl

@r

	 
2

þ 2 rDl þ Rl�1ð ÞDl
@Tl

@r
dl l

dT
þ Dl

2ctgu
@Tl

@u

dl l

dT

þ Dl
2 d

2l l

dT2

@Tl

@u

	 
2

þ Dl
2 @

2Tl

@r2
dl l

dT
� r

0 2
Dl

4 þ 2r
0
Dl

3Rl�1 þ R2
l�1Dl

2
� �

@Tl

@t

dCl

dT

!
#lik

þ kl
d � r

0 2
4Dl

3 þ 6r
0
Dl

2Rl�1 þ 2R2
l�1Dl

� �
Cl

@Tl

@t
þ 4r

0
Dll l

@Tl

@r

	

þ 2 rDl þ Rl�1ð Þl l
@2Tl

@r2
þ 2 rDl þ Rl�1ð Þ dl l

dT
@Tl

@r

	 
2

þ 2Dl ctgu l l
@Tl

@r
þ dl l

dT
@Tl

@u

	 
2

þ l l
@2Tl

@u 2

 !
Þw ikðu Þ;

r
0 2 0; 1ð Þ; l ¼ 1; 2; . . . ;L; t 2 tmin; tmaxð �: (41)

� b 1 l 1 T1 0; u ; tð Þð Þ @#1ik 0; u ; tð Þ
@r

� b 1
@T1

@R
dl 1

dT
#1ik 0; u ; tð Þ

þ Dla1 #1ik 0; u ; tð Þ ¼ d 1
k ðq1 u ; tð Þ � a1T1 0; u ; tð ÞÞw ikðu Þ; (42)

� b 2 l L TL 1; u ; tð Þð Þ @#Lik 1; u ; tð Þ
@r

� b 2
@TL

@r
dl L

dT
#Lik 1; u ; tð Þ

þ DLa2 #Lik 1; u ; tð Þ ¼ d L
k ðq2 u ; tð Þ � a2TL 1; u ; tð ÞÞf ikðu Þ; (43)

Dlþ1l l Tl 1; u ; tð Þð Þ @#lik 1; u ; tð Þ
@r

þ Dlþ1
@Tl

@r
r
dl l

dT
#lik 1; u ; tð Þ þ d lþ1

k l l
@Tlþ1

@r
w ikðu Þ

¼ Dll lþ1 Tlþ1 0; u ; tð Þð Þ @#lþ1;ik 0; u ; tð Þ
@r

þ Dl
@Tlþ1

@r
dl lþ1

dT
#lþ1;ik 0; u ; tð Þ

þ d l
kl lþ1

@Tlþ1

@r
w ikðu Þ; l ¼ 1; 2; . . . ; L� 1; t 2 tmin; tmaxð Þ; (44)
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� l l
@#lik

@r
1; u ; tð ÞRl � dl l

dT
@Tl

@r
Rl#lik 1; u ; tð Þ � l l

dRl

dT
@Tl

@r
#lik 1; u ; tð Þ

¼ d k
l Tl 1; u ; tð Þ � Tlþ1 0; u ; tð Þð Þ þ dl #lik 1; u ; tð Þ � #lþ1;ik 0; u ; tð Þ� �

;

l ¼ 1; 2; . . . ;L� 1; t 2 tmin; tmaxð Þ; (45)

where d l
k –Kronecher’s symbol

d l
k ¼

1; if l ¼ k;
0; if l 6¼ k:

�

Therefore, the algorithm of search of optimal thickness of multi-layer thermal insulation is
complete.

Design of multi-layer thermal protection of variable thickness
As an example of applying the suggested algorithm, let us consider a problem of thickness
sampling for a multilayer thermal protection shield of advanced solar probe. Considered
problem is just a testing example, which approved the workability of developed algorithm.
For this purpose, it is not very important to consider the real technical problems with all
external factors, etc.

It is suggested that the spacecraft is three-axis stabilized and pointed with “{” axis
toward the Sun; the minimum Sun-spacecraft distance corresponds to 9.74 solar radii.
During perihelion passes, the spacecraft will be subjected to the solar flux, ranging between
20,000 and 670,000 W/m2, as shown in Figure 1. The back surface of the heat shield was
assumed thermally insulated (it is traditional majority estimate for design problems).

As a designed structure, a two-layer thermal protection coating with the geometry,
presented in Figure 2, is considered. The system includes:

� a carbon-carbon composite material coated with SiC (C-C) and highly porous
ceramic material (TZMK-10);

� a carbon-carbon composite material and reticulated vitreous carbon foam
(RVC);

� highly porous ceramic material and reticulated vitreous carbon foam; and
� the carbon-carbon composite material and highly porous SiC foam (SiC).

Figure 1.
Time dependence of
heliocentric distance
and solar flux to the
front surface of solar

probe heat shield
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Values of thermal properties of materials used in simulation are given in Table I. The
thicknesses of both layers are determined (N = 2) taking into account the temperature
constraints between the layers and at the back surface of the system (M = 2). The number
of steps by time equals 1,000. The numbers of parameters of approximation are equal to
Nk = 5. With this set of numerical parameters, the considered problem is well-posed, and,
therefore, it does not need any kind of regularization. In general case, when coefficients of
mathematical model (thermal conductivity and heat capacity) are continuous functions,
the minimized functional has convex shape, and corresponding Hessian never becomes
close to singular, and thickness optimization problem also does not need any kind of
regularization. Cases of very specific thermal properties of materials were not considered
in this paper.

The temperature constraints on the back surface of the coating and at the boundary of
layers were limited to the values of 320 and 900 K, respectively. The results of variable
thickness determining for the two-layer thermal protection coating of the solar probe heat
shield, having spherical segment shape, are presented in Figure 3. Optimal layer thickness
was obtained for four different layer compositions listed in Table II.

The temperatures as a function of time for a few discrete points at the surface are
presented in Figure 4. For considered heat flux, just the final temperature constraint
became active for any points and any layers. The reason of this fact is the monotonically
increasing heat flux at considered time. The effectiveness of considered approach is
proved by the simultaneous maximum values (equal to constraint) of all points and all
layers.

Through increasing the radius of curvature of a spherical segment heat shield surface,
the temperature of the first thermal insulation layer could be greatly reduced, thereby
minimizing the adsorbed solar flux and potentially making the shield more effective.
However, it should be noted that the shape selection for the sunshield is driven also by the
geometrical size of the spacecraft, dimensions of the payload fairing and limitations related

Table I.
Thermal properties
of materials

Material l , (W/(m·R) C, J/(m3·R) r , (kg/m3)

C-C 4.0 2,721,000 1,802
TZMK-10 0.35 184,600 142
RVC 0.6 90,000 57
SiC 2.0 780,000 567

Figure 2.
Geometric
characteristics of the
solar probe heat
shield
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Figure 3.
Optimal layer

thickness of the
spherical heat shield

for four different layer
compositions

(according to Table II)
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Note: The lower curves correspond to the first layer

Table II.
Curves numbers
depending on the

layers’ composition
and heat shield
configuration

Material of First layer
Curve in Figure 3

Material of Second layer
Curve in Figure 3

u = 30° u = 60° u = 30° u = 60°

C-C 1 2 TZMK-10 3 4
C-C 5 6 RVC 7 8
TZMK-10 11 12 RVC 9 10
C-C 13 14 SiC foam 15 16
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to the required fields of view for the remote sensing instruments. A flat surface of the shield
would greatly simplify the interface to the payload and ensure a clear view through the
shield for the remote sensing instruments.

Conclusion
The procedure proposed in the paper to solve a design problem is based on the method of
quadratic approximation of the initial problem statement as a Lagrange formulation. This
has allowed to construct a rather universal algorithm applicable without modification for
solving a wide range of thermal design problems.

Figure 4.
Time dependence of
temperature at the
boundary of layers
and on the back
surface of the coating
for different angles
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